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Abstract

Music has the ability to evoke different emotions in people, which is reflected in their
physiological signals. Advances in affective computing have introduced computational
methods to analyse these signals and understand the relationship between music and emo-
tion in greater detail. We analyse Electrodermal Activity (EDA), Blood Volume Pulse
(BVP), Skin Temperature (ST) and Pupil Dilation (PD) collected from 24 participants
while they listen to 12 pieces from 3 different genres of music. A set of 34 features were
extracted from each signal and 6 different feature selection methods were applied to iden-
tify useful features. Empirical analysis shows that a neural network (NN) with a set of
features extracted from the physiological signals can achieve 99.2% accuracy in differenti-
ating among the 3 music genres. The model also reaches 98.5% accuracy in classification
based on participants’ subjective rating of emotion. The paper also identifies some useful
features to improve accuracy of the classification models. Furthermore, we introduce a
new technique called ’Gingerbread Animation’ to visualise the physiological signals we
record as a video, and to make these signals more comprehensible to the human eye, and
also appropriate for computer vision techniques such as Convolutional Neural Networks
(CNNs). Our results overall provide a strong motivation to investigate the relationship be-
tween physiological signals and music, which can lead to improvements in music therapy
for mental health care and musicogenic epilepsy reduction (our long term goal).
Keywords: psychological signals, music genres’ classification, music therapy

1 Introduction

Music is considered by many to be a universal
language, that can elicit emotion from people all
over the world. It is an art form that not only gives
us pleasure but also works as a medicine for both
mind and body. Listening to music has been shown
to decrease heart and respiratory rate, as well as the
level of stress hormones such as cortisol [1], thus
it has been used to reduce stress and anxiety for
many years. Music has also been shown to main-

tain the control of attention and strengthen focus in
tasks [2]. Therefore, when it comes to analysing hu-
man mind and emotions, music has been a popular
choice of stimuli among researchers.

Although music has been used quite frequently
in therapy and biofeedback training, surprisingly
little is known as to how it affects humans. Mu-
sic therapy has been proved to reduce anxiety, im-
prove sleep quality, reduce epileptic seizures etc.
Harmat et al. [3] conducted an experiment on
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94 students and showed that classical music im-
proved their sleep quality, statistically. In Coppola
et al., eleven patients with drug-resistant epileptic
encephalopathy listened to a set of Mozart’s compo-
sitions 2 hours per day for 15 days, and the results
demonstrated that their frequency of seizures were
reduced by half [4]. Classical music has frequently
been shown to have positive effects in improving
mental health and daily behavior. Furthermore, it
is well known that increasing gamma waves in the
brain can be beneficial as these waves are known
to improve focus, cognition and memory formation.
This is why many music therapy sessions use mu-
sic or video stimuli to increase gamma waves in the
brain to enhance cognitive ability. However, other
types of music have not been compared extensively
to verify whether they have different effects in com-
parison to classical music. In addition, these studies
did not verify if they have any correlation with the
participants’ physiological signals. The wide range
of applications of music in improving mental health
are fascinating, and it is certainly worthwhile to ex-
plore how human physiological signals change pat-
tern in response to music stimuli.

Physiological signals are strong measures found
in human beings that demonstrate sensitivity to
emotional changes. Identifying different physiolog-
ical signal patterns caused by different types of mu-
sic can help understanding which music should be
used in responding to or even treating the above
mentioned disorders. Physiological signals have
been used by a number of researchers in the last
few years to identify different emotions in humans.
These signals were used with video stimuli to clas-
sify smiles [5] and anger [6] and reached an accu-
racy of 96.5% and 95% respectively. Physiological
signals were also able to identify stress [7]. Com-
bining a biofeedback training approach with phys-
iological signals, a correlation between the signals
and reduction in epileptic seizures was observed in
an experiment by Nagai et.al [8]. These approaches
provide a strong motivation to analyse a range of
physiological signals and identify if they have a re-
lation to different audio (music) stimuli.

Terms such as ’chills’, ’thrills’ and ’frissons’
are often used by psychology researchers to de-
scribe the psychophysiological moments of musi-
cal experience [9]. A ’frisson’ is ’a sudden strong
feeling of excitement’ and ’micro-frisson’ is a sud-

den small feeling, which is too small to detect con-
sciously, but is reflected by a person’s physiological
signals [16]. In particular, chills and micro-frissons
are closely related and they reflect the emotional
intensity induced by music [10]. These sensations
are said to be highly reflected in physiological mea-
sures such as skin conductance response [11, 12].
Thus, physiological signals measured on the skin
can be very useful in analysing the emotional ef-
fects of music.

In this paper, we explore the effects of four dif-
ferent physiological signals, Electrodermal Activity
(EDA), Blood Volume Pulse (BVP), Skin Temper-
ature (ST) and Pupil Dilation (PD) from subjects
listening to music. All of these signals showed
significant changes (reflecting the listener’s reac-
tion) to different stimuli [13, 14, 15]. Our previous
study [16] had only explored the effects of EDA sig-
nals in differentiating different types of music based
on genre and participants’ subjective ratings. This
study extends that work and investigates the effects
of all four different signals using a broader set of
features and also the combination of all of those sig-
nals. The paper is organized as follows: Following
the introduction in Section 1, we discuss the mate-
rials and methods for the experiment in Section 2.
Next in Section 3, we introduce our novel Ginger-
bread Animation technique and a graph based vi-
sualisation method. Then in Section 4, we display
the results and discuss those in detail. Finally, we
conclude the paper by highlighting some limitations
and mention possible future work.

2 Preliminaries

2.1 Stimuli

A total of 12 music pieces were chosen as stim-
uli for this experiment. All the pieces were around
4 minutes in length. The music pieces were di-
vided into three categories: classical, instrumental
and pop. The complete list of the music pieces used
in this experiment is given in Table 1.

As music pieces with long lasting periodicity
(phrases spanning several bars of music) have been
used for music therapy due to their beneficiary ef-
fects [17], we chose classical music pieces hav-
ing this feature. Although music therapy research
mostly includes the use of classical music pieces, it
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is not ideal to only use one type of music because
frissons may also occur while listening to other
types of music. Limiting the stimuli to only one
type also limits the ecological validity of the results
[9]. Hence, we also chose some pieces from in-
strumental and popular music genres. When choos-
ing instrumental music, we chose binaural beats
which are shown to effectively synchronize brain-
waves to enhance a specific brainwave pattern [19].
We selected two different types of binaural beats:
a Gamma wave boosting piece to regain focus and
awareness [20], and an alpha wave boosting piece
for relaxation [21]. We also chose a jazz genre piece
and a rock genre piece. Both of these pieces were
used to analyse the effects of alpha and beta waves
by Hurless et.al [22]. For the pop music category,
we chose the No. 1 song of Billboard Hot 100 year-
end charts from years 2014-2017 [23].

Table 1. Music Stimuli Used in the Experiment

Song Name Genre
Mozart Sonatas K.448 [4] Classical
Mozart Sonatas K.545 [18] Classical
F. Chopin’s ”Funeral March”
from Sonata in B flat minor Op.
35/2

Classical

J.S Bach’s Suite for Orchestra
No. 3 in D ”Air” [17].

Classical

Gamma Brain Energizer Instrumental
Serotonin Release Music with
Alpha Waves

Instrumental

The Feeling of Jazz by Duke
Ellington

Instrumental

YYZ by Rush Instrumental
Happy by Pharrell Williams Pop
Uptown Funk by Mark Ronson
featuring Bruno Mars

Pop

Love Yourself by Justin Bieber Pop
Shape of You by Ed Sheeran Pop

2.2 Participants

Thirteen male and eleven female students (24
in total) participated voluntarily in this experi-
ment.The mean age was 21 years old (±4.6).
Among the participants 19 were undergraduate
while 5 of them were postgraduate students. Some
of the students had experience in playing different
instruments, but none of them are professional mu-

sicians or music students. All of the participants
signed a written consent form before participating
in the experiment. The study was approved by the
Australian National University’s Human Research
Ethics Committee.

2.3 Physiological Measures

2.3.1 Electrodermal Activity

Electrodermal activity (EDA) or Skin Conduc-
tance (SC) is a useful physiological signal which is
known to be sensitive to emotional changes [24].
The EDA response fluctuates slowly but signifi-
cantly, reflecting the current emotional state, and
have been shown to have a strong correlation with
cognitive load [25, 26]. The flow of electric-
ity along the skin increases during stressful tasks,
while it decreases during a relaxed state. Due to
the reliability of data (less prone to noise) and easy
analysis method, EDA has become one of the most
used physiological signals to detect various affec-
tive states. The signal can be measured by placing
electrodes on the surface of the skin. They are gen-
erally placed on the hands, some devices are placed
on the wrist while others require electrodes to be
placed on the fingers. Skin conductance signals can
be divided into two categories based on their fre-
quency. One is referred to as Skin Conductance
Response (SCR) which shows the rapidly changing
peaks in the signal. The other is called Skin Con-
ductance Level (SCL) which is the slowly changing
levels of the signal. Generally for affective comput-
ing, SCR signals are analysed.

2.3.2 Blood Volume Pulse

Blood Volume Pulse (BVP) refers to measure-
ment of the volume of blood that is flowing through
the tissues of a particular part of the body. It is usu-
ally measured on every pulse. BVP has been shown
to have a correlation to emotional state change. For
instance, higher stress is said to be reflected by low
BVP level and vice versa [27]. Therefore this sig-
nal is often used in biofeedback training for reduc-
ing stress and anxiety. The sensors are also less
complicated than for other signals, thus it is a pop-
ular choice for biofeedback based therapy. BVP
is generally obtained by a photoplethysmography
(PPG) sensor that detects the amount of light re-
flected from an infrared light source positioned on
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the skin. This gives the amount of blood present in
that certain area at a certain time. Some devices that
record EDA can also record BVP.

2.3.3 Skin Temperature

Skin temperature (ST) is another commonly
used physiological measure. Although it is a rela-
tively sluggish indicator, it is still able to show cor-
relation to different emotional states. ST tends to
increase during the relaxed state while it decreases
during increased stress or anxiety [28]. ST is mea-
sured normally on the surface on the skin, using the
same sensor delivery platform as devices that mea-
sure skin conductance.

2.3.4 Pupil Dilation

Human eyes provide valuable information on
their emotions and current mental state. There
are various features that can be derived from the
eye such as pupil dilation, blinking rates, eye gaze
point, fixation point and saccade and fixation times
etc. Among these, pupil dilation, which is the mea-
surement of pupil size over time, is considered a
very effective feature in emotion recognition [29].
Pupil diameter changes are said to reflect changes in
brain state [30]. Typically in lab based experiments
an eye tracking device is aligned with a computer
screen so it can track where a person is looking on
the screen. Pupil dilation has been used as an in-
dication of emotional arousal such as stress [31].
Changes in pupil dilation have been seen while lis-
tening to familiar music and vocals [32]. Therefore
it can be a useful signal to identify the effects of
different music.

2.4 Experimental Design

All participants were recruited through a volun-
teer research participation website of the University.
After arrival at our lab, they were briefed about the
experiment procedure and handed a participation
information sheet with detailed instructions. After
they understood the procedure and agreed to partic-
ipate in the experiment by signing a written consent
form, they were asked to sit comfortably in a chair
in front of a 17.1 inch monitor. The participants
were fitted with an Empatica E4 device [33] on their
left wrist which recorded their EDA, BVP and ST
signals.The sampling rate of EDA, BVP and ST

were 4, 64 and 4 Hz respectively. Figure 1 shows
the Empatica E4 device. PD data was collected us-
ing The Eye Tribe device at a sampling rate of 60
Hz [34].

Figure 1. Empatica E4 device [33]

The procedure started with the calibration pro-
cess of the physiological sensors. Due to the device
being sensitive to external movements, all partici-
pants were asked to limit any unnecessary move-
ment during the experiment in order to avoid adding
artefacts to the signals. They were also asked
to wear noise cancelling headphones (Bose Qui-
etComfort 20) which helped remove any effects
from outside noise during the experiment. The
entire experiment was conducted through an in-
teractive website prepared for this purpose. Par-
ticipants answered some basic demographic ques-
tions at the beginning of the experiment. Then
the participants listened to each piece of music
and gave a series of ratings to the music based
on 6 different emotion scales. These scales are
i) sad → happy ii) disturbing → com f orting iii)
depressing → exciting iv) unpleasant → pleasant
v) irritating → soothing vi) tensing → relaxing.
The first 4 ratings are to find participants’ general
impression about the music itself, and the other 2
ask about the participants’ feelings while listening
to that piece of music. The metrics are described in
detail in [35]. The subjective ratings are based on
a 7-point Likert scale, chosen as this is considered
the most appropriate number for Likert [36]. At the
end of the experiment, participants provided some
general comments about the music pieces in a post-
experiment questionnaire.

In order to analyse the emotional ratings pro-
vided by the participants, we have visualised the rat-
ings based on their valence-arousal level in a two-
dimensional emotion model. The original model
was proposed by Russell [37] which contained a
wider list of emotions. Based on that model we
have created our model with the 6 emotion scales
used in the study (Figure 2). This is a more ef-
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Figure 2. Two Dimensional Emotion Model by Valence and Arousal

fective approach than modeling the emotions with
discrete labels because real world stimuli induce
blended emotions, and they can be expressed bet-
ter in multidimensional space [38].

After collecting the raw physiological signals,
they are analysed through multiple steps. The com-
plete process is shown in Figure 3.

Figure 3. Overall Steps of the Experiment

2.5 Preprocessing

Performing some preprocessing techniques on
the collected signals is a crucial part of data anal-
ysis. These physiological signals vary widely in
range due to the values of the signals being subject-
dependent. Therefore, normalizing the data is nec-

essary. Min-Max normalization technique is used
to normalize the collected EDA, BVP, ST and PD
signals. The equation for min-max normalization is

v′=
= ( v−min v

max v−min v) ∗ (new max − new min) +
(new min),

(1)

where, v′ corresponds to min-max normalized data
and v is the full range of raw data, max v and min v
are the maximum and minimum value of v respec-
tively. Here we chose new min = 0 and new max =
1. Thus, all values were normalized to have a value
within the range of 0 to 1. Data from each partic-
ipant were normalized individually, across all their
pieces of music.

Collected physiological signals are also prone
to noise artefacts due to participants’ movement,
blinking and so on. So after normalization, we
filtered the data to remove any potential artefacts.
We chose median smoothing filter process for this
step [39]. In keeping with our previous study [16],
we chose a 10 point median filter as the optimum
number which results in minimum loss of data.
For pupil dilation data, we needed to perform an
additional preprocessing step because several data
points were empty due to blinking by the partici-
pant. In this case, we applied linear interpolation to
generate those data points.
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2.6 Feature Extraction

After preprocessing, a number of features were
extracted from the physiological signals as the
recorded features are very large in size and there-
fore computationally expensive to analyse. Based
on a number of papers in the literature [40, 41, 42,
43, 44], we extracted a total of 34 different features
(linear and nonlinear) from each of the 4 physio-
logical signals. These include features in both time
and frequency domains. Some features were also
extracted from both normalized and filtered signals.
The first 14 features follow some statistical fea-
tures used in the analysis of our previous study [16]:
we expanded the list with more features which are
listed below:

– Root mean square, average value of the power
of signals, integrated signals, simple square in-
tegral - These features provide basic statistical
information of the physiological signal changes
that were seen in the duration of music listening.

– Average Amplitude Change - Calculated by first
finding the difference between two consecutive
samples, then averaging them over the length of
the piece of music.

– Log Detector - This feature represents a non-
linear characteristic which is calculated by the
average logarithm of the signal value over the
music length.

– Difference Absolute Standard Deviation Value
- Calculated by the standard deviation between
two consecutive signals.

– Non Linear Features to Measure Complexity
and Correlation - We calculated a number of
non-linear features to identify the complexity
and correlation properties of the physiological
signals. Some of these take self-similarity into
account, while others do not. The features are
detrended fluctuation analysis (DFA), Hjorth pa-
rameters and Hurst exponent. There are 3 Hjorth
parameters, we consider extracting mobility for
this study.

– Non Linear Features to Measure Randomness -
Entropy represents the randomness in physio-
logical signals. Similar to the other non-linear
features we extracted, some of these are based

on the self-similarity of signals while others are
not. We calculate 5 types of entropy for the
features. They are, sample entropy, approxi-
mate entropy, Shannon’s entropy, permutation
entropy, fuzzy entropy.

2.7 Feature Selection

Feature selection is often done in order to find
useful features and remove any redundant features.
Finding an optimum number of features can result
in a speedy classification process. Having irrele-
vant features has been shown to significantly de-
crease the performance of a classification model
[45]. The feature selection process can be done
in two ways. One is to rank each of the features
and select a fixed number of top ranked features to
build the feature set; the other way is to select dif-
ferent subsets of features and classify in order to
find the optimal set. We chose two feature ranking
algorithms (Statistical Dependency (SD), Minimal-
redundancy-maximal-relevance (MRMR)) and four
feature subset selection methods (Genetic Algo-
rithm (GA), Random Subset (RSFS), Sequential
(SFS) and Sequential Floating (SFFS)) explained in
[46, 47].

2.8 Evaluation Measures

While classification accuracy is necessary to
show how good the model is, it does not give com-
plete information about the benefit or values of a
model. Sometimes, models with a lower accuracy
can have a higher predictive power compared to
models with higher accuracy [48]. Therefore, some
additional measures also need to be reported along
with classification accuracy. We also calculate the
F-measure (also known as F-Score or F1 Score),
which is a commonly used evaluation measure rep-
resented by the harmonic mean of precision and re-
call. Precision refers to the fraction of the predicted
labels matched while recall refers to the fraction of
reference labels matched. We also reported the pre-
cision and recall (also referred as sensitivity), speci-
ficity (true negative rate) and geometric mean val-
ues (measure of central tendency).
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in two ways. One is to rank each of the features
and select a fixed number of top ranked features to
build the feature set; the other way is to select dif-
ferent subsets of features and classify in order to
find the optimal set. We chose two feature ranking
algorithms (Statistical Dependency (SD), Minimal-
redundancy-maximal-relevance (MRMR)) and four
feature subset selection methods (Genetic Algo-
rithm (GA), Random Subset (RSFS), Sequential
(SFS) and Sequential Floating (SFFS)) explained in
[46, 47].

2.8 Evaluation Measures

While classification accuracy is necessary to
show how good the model is, it does not give com-
plete information about the benefit or values of a
model. Sometimes, models with a lower accuracy
can have a higher predictive power compared to
models with higher accuracy [48]. Therefore, some
additional measures also need to be reported along
with classification accuracy. We also calculate the
F-measure (also known as F-Score or F1 Score),
which is a commonly used evaluation measure rep-
resented by the harmonic mean of precision and re-
call. Precision refers to the fraction of the predicted
labels matched while recall refers to the fraction of
reference labels matched. We also reported the pre-
cision and recall (also referred as sensitivity), speci-
ficity (true negative rate) and geometric mean val-
ues (measure of central tendency).
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3 Visualisation of the Physiological
Signals - Gingerbread Animation

We were interested to investigate the effects of
analysing the physiological signals using different
visualisation techniques. As a preliminary study,
we visualised the physiological signals in a 2D
graph. Each participant’s data were segmented ac-
cording to the audio stimuli length. EDA, BVP and
ST values were represented in red, blue and green
colour respectively. We did not use PD values in
this preliminary study. Figure 4 shows a sample
graph image used in this analysis.

Figure 4. Physiological Signals Representation as
a Graph (Blue = BVP, Red = EDA, Green = ST)

When using physiological signals, in particu-
lar many physiological signals over a longer pe-
riod, it is difficult to visualise the data. We have
devised an approach we call Gingerbread Anima-
tion which uses a stylized 2D representation of a
human body and visually represents the time series
of physiological signals propagating on that 2D sur-
face, which can be presented as a video. In the gin-
gerbread animation, we have used BVP, PD, EDA
and ST signals, which can be represented by red,
green, blue and gray colours respectively. The loca-
tions of data representation also reflect the locations
where these signals are generated where possible.
The PD, BVP, EDA and ST signals are displayed
in right eye, heart, left wrist and right foot area re-
spectively. These colours can combine and create
mixed colours on the surface. Thus, we produce a
sequence of images (forming a video) representing
each experimental trial, and retaining a representa-

tion of each signal – the colours mix, but the R, G,
B values are not lost. This representation leads to
an additional benefit, that we can make use of the
highly advanced computer vision techniques avail-
able for images to classify and predict based on our
new video data.

Figure 5. Physiological Signals Representation in
an Animation (Red = BVP, Blue = EDA, Green =

PD, Gray = ST

Figure 5 shows a representative image, being a
few seconds into an audio stimulus. Each datum is
represented as a ring with a fixed maximum width
in the animation. The latest data appears in the mid-
dle of the circle, for each type of signal, up to 40
time steps of data are showing at the same time.
These 40 rings constitute an entire circle. The older
the data, the closer to the outside edge the circle it
moves to, which simulates the effect of data rippling
out.

Physiological data is mapped to the RGB model
in the animation, in which (0,0,0) is black and
(255,255,255) is white. To make the visualisation
more in line with human intuition, the background
is set as white, so as to highlight stronger signals
that appear darker due to lower RGB values.

As the data spreads, the intensity continues to
decay until it drops to 0, which is represented by
255 in the RGB model. For example, when a BVP
datum is 0.8, it is represented as (51.2,0,0) in the
RGB model in the middle of the circle when it first
appears and then after spreading out, it begins to de-
cay slowly and ends up as (255,0,0) which is seen
as a bright red color in the animation.
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In areas where multiple types of signal overlap,
the overlapped RGB value is added by the RGB val-
ues of each signal. For example, a BVP datum of
0.8 (i.e. (51.2,0,0) in RGB) meets a wrist datum of
0.5 (i.e. (0,0,128) in RGB), and the resulting output
is (51.2,0,128) in RGB.

We can see that in some parts of the image the
amplitudes of the original signals can still be easily
seen as the colours have not yet begun to mix. It
is noticed that the BVP signals vary rhythmically,
while the ST varies in a much smoothed manner,
while the EDA is not rhythmic in this fashion. We
can also see some regions where the colour has be-
gun to mix, and producing visually pleasing com-
plex patterns related to the data.

4 Results and Discussion

4.1 Classification Results

Two types of classification were performed on
the experiment data. The first was to classify the
data into 3 music genres, the other was to classify
based on the subjective rating of emotions given by
each participant. To classify the signals, 3 different
classification techniques were used for comparison.
They are: Neural Network (NN), K-Nearest Neigh-
bor (KNN) and Support Vector Machine (SVM).
Using these methods we performed the classifica-
tion in 5 different conditions. We used EDA, BVP,
ST and PD features individually for classification,
and also combined features from all 4 signals. The
entire process was done using all the features and
also features selected by the 6 feature selection
methods. For the 2 feature ranking methods SD and
MRMR, we have chosen the top 12 features to use
in the classification process. A leave-one-observer-
out process was performed as the validation ap-
proach. Classification was performed using MAT-
LAB R2018a software with an Intel(R) Core(TM)
i7-5200U processor with 3.60 GHz, 16.00 GB of
RAM and Microsoft Windows 10 Enterprise 64-bit
operating system.

For classification using neural networks, a pat-
tern recognition network was constructed with one
input layer, one hidden layer and one output layer.
The hidden layer consisted of 30 nodes. This was
chosen based on the comparison of different hidden
layer sizes done in our previous study [16]. Other
parameters of the network were: Levenberg—

Marquardt method as network training function
and mean squared normalized error as performance
function. The classification process was done 20
times and the average of those results were se-
lected. For KNN, we performed the process us-
ing node size 3-30 and chose the best results. K=
5 or 7 resulted in best outputs for all cases. We
used Minkowski as the distance metric. The mul-
ticlass SVM chosen for this study uses tree learner
and one-versus-all coding design.

For classification using the graphs constructed
from physiological signals, we used a pre-trained
convolutional neural network (CNN) resnet18 and
modified the final layer in order to train (fine-tune)
the model using our graph images. Resnet in-
troduced skip connections which help resolve the
vanishing gradient issue [49]. Figure 6 shows the
resnet18 architecture.

Figure 6. Resnet18 Architecture
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Figure 7. CNN Architecture for Gingerbread Animation

To classify the images obtained from our Gin-
gerbread Animation, we constructed a CNN us-
ing stochastic gradient descent with momentum
(SGDM) with an initial learning rate of 0.005, mini
batch size of 32. We chose a version of the classic
Lenet-5 architecture containing three convolutional
layers, two max pooling layers, a fully-connected
layer and a softmax classifier. Figure 7 shows the
CNN architecture.

Certain patterns are observed from the classifi-
cation results which are described below.

4.1.1 Neural network performs best among all
classifiers

We compared the results of all 5 classification
approaches and in every case NN performed sig-
nificantly better than KNN and SVM. Figure 8
shows the accuracy results based on the partici-
pants’ subjective rating based on the emotion scale
tensing → relaxing, using all features.

Figure 8. Classification Result Based on
Subjective Rating (tensing → relaxing)

From Figure 8 we can see that NN performs
best in terms of accuracy in all 5 combination of
features. Neural network gives the accuracy of
97.7%, 98.3%, 98.3%, 98.7% and 98.5% accuracy
using EDA, BVP, ST, PD and EDA+BVP+ST+PD
features respectively. In comparison, KNN gives
70.3%, 73.9%, 69.8%, 74.5%, 77.6% and SVM
gives 56.8%, 58,9%, 64.1%, 58.9%, 62.5% accu-

racy. This pattern prevails in classification using
features from the feature selection methods as well.
This study solidifies the results from our previous
study in showing that a simple NN can be a strong
system in classifying physiological signals.

4.1.2 Feature selection produces best results
for music genre Classification

We compared the accuracy results of different
feature selection methods for music genre classifi-
cation and the results are shown in figure 9.

It can be seen that for the EDA, BVP, ST, PD
and EDA+BVP+ST+PD feature combinations, the
RSFS, MRMR and SD methods result in the best
NN accuracy. Both KNN and SVM also produce
their best results using feature selection methods.
The results show similar patterns across all evalu-
ation measures. Table 2 shows the results of all 6
evaluation measures for NN classification of music
genres. The table does not include results using GA
and SFFS as feature selection methods because they
do not achieve the highest values in any of the eval-
uation measures.

Figure 9. Classification Result Based on Music
Genre

From the table we can observe that the high
score for all evaluation measures is reached by a
feature selection method. A few exceptions can be
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Table 2. Classification Results Based on Music Genre
All SD MRMR RSFS SFS

Accuracy 0.981 0.975 0.971 0.984 0.908
Precision 0.982 0.976 0.979 0.983 0.875
Recall 0.959 0.947 0.934 0.969 0.847

EDA Specificity 0.991 0.988 0.989 0.992 0.939
F-
Measure

0.971 0.961 0.956 0.976 0.860

G-mean 0.975 0.967 0.961 0.980 0.892
All SD MRMR RSFS SFS

Accuracy 0.975 0.992 0.993 0.983 0.989
Precision 0.957 0.992 0.994 0.974 0.984
Recall 0.969 0.983 0.984 0.977 0.983

BVP Specificity 0.978 0.996 0.997 0.987 0.992
F-
Measure

0.963 0.988 0.989 0.975 0.984

G-mean 0.973 0.989 0.991 0.982 0.988
All SD MRMR RSFS SFS

Accuracy 0.982 0.989 0.986 0.975 0.944
Precision 0.959 0.983 0.979 0.962 0.925
Recall 0.989 0.985 0.979 0.963 0.906

ST Specificity 0.979 0.991 0.989 0.981 0.963
F-
Measure

0.974 0.984 0.979 0.963 0.915

G-mean 0.984 0.988 0.984 0.972 0.934
All SD MRMR RSFS SFS

Accuracy 0.983 0.981 0.984 0.979 0.941
Precision 0.984 0.979 0.985 0.981 0.924
Recall 0.968 0.963 0.966 0.959 0.898

PD Specificity 0.992 0.989 0.993 0.991 0.963
F-
Measure

0.975 0.971 0.975 0.969 0.91

G-mean 0.979 0.976 0.979 0.974 0.929
All SD MRMR RSFS SFS

Accuracy 0.97 0.978 0.977 0.972 0.958
Precision 0.952 0.951 0.948 0.957 0.937

EDA+ Recall 0.96 0.984 0.986 0.96 0.936
BVP+ Specificity 0.975 0.975 0.973 0.979 0.969
ST+ F-

Measure
0.956 0.967 0.966 0.959 0.936

PD G-mean 0.968 0.979 0.979 0.969 0.952
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observed such as, the condition using ST features
where the highest recall score is achieved by us-
ing all features. Furthermore, using PD features,
the highest recall and specificity is achieved us-
ing the full sets of features. However, we can see
that in those combinations the highest F-measure
is reached by SD and MRMR method respectively,
aligning with the other measure values. F-measure
is the harmonic mean of precision and recall, which
takes both false positive and false negative values
into account. Recall does not consider false pos-
itive values, therefore the F-measure is a stronger
measure for evaluating a model, compared to just
precision or recall. Thus we can say that using a
smaller subset of the features not only reduces the
computational time, but also increases accuracy of
our model in classifying different music genres.

We also compare this result to our previous
study [16], where we analysed only the EDA sig-
nals with 14 extracted features. The study reached
the highest accuracy of 96.8% for music genre clas-
sification. In our current study, the accuracy using
EDA features has increased to 98.4%, and overall
the highest accuracy of our classification model is
99.3%, using BVP features. A better set of fea-
tures has contributed to the improved accuracy of
our classification models.

4.2 Statistical analysis on all evaluation
measures

Results of the 6 evaluation measures for NN
classification across all 5 conditions were analysed
using analysis of variance (ANOVA) test. A one-
way ANOVA test showed high statistical signifi-
cance (p < 0.01) for all of the evaluation measures.
We also compared the accuracy results for all pairs
of feature selection methods for statistical signifi-
cance. The results are shown in Table 3.

In Table 3, the numbers in colour and bold are
the pairs that show meaningful differences. Red
colour shows a significance of p < 0.05, while
blue colour shows significance p < 0.01 and green
colour shows significance at threshold p < 0.001.
We further observe that both SFS and SFFS reach
high significance values in comparison with other
selection methods. This is reflected in the num-
ber and type of features chosen by these methods as
well. It can be clearly seen from the table that dif-
ferent combinations of features in the model result

in significant differences in model accuracy. There-
fore, in the section below we discuss some of the
features that were shown to be useful for our classi-
fication models.

Table 3. Significance Values for All Pairs of
Feature Selection Methods

All
SD 0.00003
MRMR 0.00009 0.386
GA 0.0002 0.029 0.085
RSFS 0.006 0.139 0.119 0.782
SFS 0.000002 0.00002 0.000009 0.000006 0.00004
SFFS 0.000009 0.00008 0.00006 0.00003 0.0003 0.335

All SD MRMR GA RSFS SFS

4.3 Top features selected by Feature Selec-
tion Methods

We counted the number of times each feature
was chosen by the 6 feature selection methods in
all of our classification models. Based on that, we
report the top 12 features from the 34 features we
extracted in Table 4. Unless specifically mentioned,
most of the features were extracted from filtered
signals.

Table 4. Top 12 features selected by all methods

Feature Names Feature Type
Number of peaks (both nor-
malized and filtered), Variance,
Sum, Absolute Sum, Simple
Square Integral

Linear fea-
tures from
time domain

Mean, Minimum, Maximum of
the first 16 data points from
Welch Power Spectrum Den-
sity Analysis

Linear fea-
tures from
frequency
domain

Sample and Approximate en-
tropy, Hjorth paremeters (Mo-
bility)

Non-linear
features from
time domain

The list gives us some interesting insights into
what types of features are best to represent the
4 physiological signals’ changes. The number of
peaks for both normalized and filtered values were
selected the most times by all methods. These peaks
are thus the most valuable feature that reflects the
SCR occurrences (rapidly changing states). SCR
occurrences are considered to be most useful in re-
flecting autonomic arousal [50]. Although the nor-
malized and filtered signal features are quite simi-
lar, they clearly do not add redundancy to the sys-
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tem. With some signals, useful peaks might be re-
moved due to the filtering process. In those cases,
peaks in the normalized signals proved to be more
useful. We also notice that the 3 features extracted
from the Welch power spectrum density analysis
appeared in the top features list. This shows that
the frequency domain features can be very useful to
identify patterns in this signals. Future work will
include extracting more frequency domain features.

Some of the other interesting features are en-
tropies and mobility. All of these features represent
the level of complexity of the signals. Features like
entropies can effectively capture short range cor-
relations and thus, they are effective in identifying
transient emotional state changes [51].

4.4 Genetic Algorithm produces best re-
sults among all feature selection meth-
ods

We further analysed the NN accuracy results for
all feature selection methods and ranked the meth-
ods based on how many times that method achieved
highest accuracy. The list below shows the rank of
the feature selection methods and their frequency of
achieving the highest accuracy.

– GA - 11

– MRMR - 7

– RSFS - 5

– SD - 4

– SFS - 1

– SFFS - 0

It should be noted that GA was not able to
achieve the highest accuracy for music genre clas-
sification in any combination. But it was able to
achieve the highest accuracy in most combinations
for the 6 emotion based classifications. For the
cases where GA was not able to reach the highest
accuracy, it was still able to achieve close to reach-
ing the highest. In our previous study [16], we re-
ported that for the 3 emotions that have a negative
slope (depressing → neutral → exciting, sad →
neutral → happy and irritating → neutral →
soothing) in the emotion model (shown in figure 2)
GA feature selection methods performed the best.

For the emotions that have a slope of 0 or a pos-
itive value (disturbing → neutral → com f orting,
relaxing → neutral → tensing and unpleasant →
neutral → pleasant) SD/MRMR methods work the
best. However, further analysis using more physi-
ological signals and a wider set of features showed
that GA is able to select a robust set of features for
all 6 emotions based classifications. Therefore, we
recommend using GA feature selection method for
classification of music based on different emotion
ratings.

4.5 Gingerbread Animation is an effective
method for classifying emotions

We used two different subjective rating of emo-
tions (sad → happy and tensing → relaxing) for
classification using the graph and animation im-
ages. We used a 3-fold cross validation approach to
validate the accuracy of the network. We randomly
selected 16 participants’ data for training and 8 par-
ticipants’ data for testing. The graph images trained
using a pre-trained CNN achieved 61.9% accuracy
for the emotions sad → happy and 73.4% accuracy
for tensing → relaxing. In comparison, the anima-
tion images reach 68.1% and 74.8% for the same
emotion pairs. We note that the comparison is not
exact, the graph visualisations show 250 sec of data
with 3 physiological signals, while the gingerbread
animation shows 10 sec of data (40 time steps at
4 Hz) in each frame for 4 physiological signals.
These results suggest that our gingerbread anima-
tion can be both a visually attractive and effective
approach to identify emotion from human physiol-
ogy using state-of-the-art machine learning meth-
ods.

Another observation is that humans are often
incorrect in giving subjective ratings to their emo-
tional response to the audio stimuli. To initially
label the emotions according to subjective rating,
we used the majority voting approach to label each
audio stimuli. Afterwards we labelled each audio
stimulus based on each participants’ individual sub-
jective response. This resulted in the accuracy drop-
ping from 62% to 50% for sad → happy and from
73.4% to 47.4% for tensing → relaxing. There-
fore, we can see that some participants are incorrect
(compared to the population) in rating their emo-
tions listening to the audio stimuli. However, on av-
erage the participants’ response correlate with their
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fore, we can see that some participants are incorrect
(compared to the population) in rating their emo-
tions listening to the audio stimuli. However, on av-
erage the participants’ response correlate with their
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physiological response. Thus, each person reacted
as expected from the population view as to the emo-
tional content of that piece of music, while their
own conscious view was incorrect.

There is scope for improvement in both the gin-
gerbread animation and our computational models
using that data. In particular, we note that our re-
sults with the simple neural network are based on
substantial work in preprocessing, which could not
be done by the simple neural network model. Us-
ing a pre-trained CNN, we achieved notable results
using just the raw data. In the future, the overlap-
ping of the colours need to be re-defined and im-
proved to make the color mixture more natural and
the edges more blurred. In addition, further prepro-
cessing needs to be implemented in the input physi-
ological signals so that some slight signals changes
can be more clearly displayed in the animation. As
the current labels are based on participants’ subjec-
tive response so the dataset can be biased due to
the small sample size. More data and tuning the
network options can improve the accuracy of the
model. However, the preliminary results are en-
couraging and we aim to improve the animations
and fine tuning the network in order to build a ro-
bust model, with an expectation of surpassing the
results from our current work.

5 Conclusions

In this paper, we conducted a study to collect
participants’ EDA, BVP, ST & PD activity while
they listened to different genre of music. These col-
lected physiological signals were first normalized,
then smoothed. Then a range of features were ex-
tracted and a set of feature selection methods were
applied to find the best features. Analysis using
3 different classification methods (NN, KNN and
SVM) were performed and evaluated using 6 differ-
ent measures. All the results were compared using
features from a specific signal and also the com-
bination of all signals. Neural networks achieved
the highest accuracy across all different conditions
with the highest accuracy of 99.2% and 98.5% in
classifying music based on genre type and human
emotions respectively. Furthermore, GA feature se-
lection method has shown to be best for classifying
music based on subjective emotion ratings by par-
ticipants’

We have introduced a novel animation tech-
nique to both visualise physiological signals and
to make them accessible to computer vision clas-
sifiers. Preliminary results using a CNN achieved
upto 74.8% accuracy in identifying different music
based on the subjective rating of participants’ emo-
tion. Our approach will allow us to leverage state-
of-the-art computer vision approaches in analysing
multiple physiological signals collected during af-
fective experiments with high effectiveness.

There are certain limitations to our work. Due
to the difficulty of finding participants’ and collect-
ing data, the number of samples is not very large
and therefore we could not explore applying higher
power deep learning models. In addition, due to
labelling the stimuli according to participants’ sub-
jective rating of emotion, the dataset may have in-
troduced bias and thus weaken the predictive power
of our models. Future work will involve collect-
ing more data to be able to build a more robust sys-
tem. We also want to compare the results of our
techniques using physiological signals such as elec-
troencephalogram (EEG), as brain activity has also
shown to be a strong indicator to understand effects
of music [52]. In addition, further analysis on use-
ful features will be conducted to identify if the fea-
tures correlate with certain patterns in music. This
will be beneficial in identifying which music pieces
are good for music therapy. It can also reveal which
pieces could trigger epileptic seizures for each par-
ticipant, and thus should be avoided. Finally, more
comparisons with our models could be made using
publicly available physiological datasets of patients
having mental disorders. Research studies such as
ours will strengthen the motivation to use physio-
logical signals in the area of medical and affective
computing and music therapy treatments in improv-
ing mental health.
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100% classification accuracy considered harmful:
The normalized information transfer factor ex-
plains the accuracy paradox, PloS one, vol. 9, no.
1, p. e84217, 2014.

[49] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, in Proceedings of
the IEEE conference on computer vision and pat-
tern recognition, 2016, pp. 770-778.

15



20 Jessica Sharmin Rahman, Tom Gedeon, Sabrina Caldwell, Richard Jones, Zi Jin

[50] M. G. N. Bos, P. Jentgens, T. Beckers, and M.
Kindt, Psychophysiological response patterns to
affective film stimuli, (in eng), PloS one, vol. 8,
no. 4, pp. e62661-e62661, 2013.

[51] S. Jerritta, M. Murugappan, K. Wan, and S. Yaa-
cob, Emotion Detection from QRS Complex of
ECG Signals Using Hurst Exponent for Different
Age Groups, in 2013 Humaine Association Con-

ference on Affective Computing and Intelligent In-
teraction, 2013, pp. 849-854.

[52] J. S. Rahman, T. Gedeon, S. Caldwell and R. Jones,
Brain Melody Informatics: Analysing Effects of
Music on Brainwave Patterns, in International Joint
Conference on Neural Networks (IJCNN), Glas-
gow, United Kingdom, 2020: IEEE.

16

Jessica Sharmin Rahman received  
her B.Sc. (Hons) degree from the Uni-
versity of Dhaka, Bangladesh. She is  
now a Ph.D. Student in the Human-
Centred Computing (HCC) group  
of  the Research School of Computer 
Science at the Australian National   
University(ANU). She also works as  
an academic tutor at ANU. Her re-

search interests include affective computing, emotion recog-
nition, brain informatics. Her talk on her PhD thesis won the 
people’s choice award in the ANU 3 Minute Thesis (3MT) 
competition 2020.

Tom Gedeon received the B.Sc. (Hons) 
and Ph.D. degrees from the University 
of Western Australia. He is currently 
chair Professor of Computer Science 
at the Australian National University, 
Canberra, Australia, and leads the 
Human Centred Computing Group at 
the Research School of Computer Sci-
ence. His research interests are in bio-

inspired computing and in human-centred computing. He is a 
former president of the Asia-Pacific Neural Network Assem-
bly and a former President of the Computing Research and 
Education Association of Australasia. He serves on journal 
advisory boards as member or editor. He is a senior member 
of the IEEE.

Sabrina Caldwell holds a Ph.D. in 
Computer Science (ANU2016) and 
a Ph.D. in the Arts and Social Sci-
ences (ANU 2008), as well as B.Sc./
BA(Hons) (ANU2003). Her research 
interests centre around biometric 
signal processing and artificial intel-
ligence to investigate how humans 
respond to deception and credibility, 

with the goal of introducing innovative solutions for bolster-
ing online image and knowledge credibility. She teaches soft-
ware development management and has an extensive back-
ground in the Information Technology industry as a project 
manager.

Richard Jones is an adjunct Professor 
in the Research School of Computer 
Science in ANU after a long career 
in commercial applied RD for mainly 
small software companies. Educated 
at Trinity College Dublin (B.A. Maths, 
Ph.D. mathematical physics) he has 
been involved in software R&D since 
1969 when he wrote an algebraic ma-

nipulation system to support his Ph.D. work. He was heavily 
involved in developing an early text retrieval program (STA-
TUS), and has since worked in a range of text analysis soft-
ware that became commercially viable. His work in ANU has 
spanned affective computing to software engineering.

Zi Jin received his B.Sc. (Hons) and 
master degrees from the Australian 
National University. He is currently 
a programmer, working in Prof. Tom 
Gedeon’s Human-Centred Computing 
(HCC) group at the Research School of 
Computer Science. His research inter-
est includes natural language process-
ing and emotion recognition.


